
The Fundamental Welfare Theorems

The so-called Fundamental Welfare Theorems of Economics tell us about the relation between

market equilibrium and Pareto efficiency.

The First Welfare Theorem: Every Walrasian equilibrium allocation is Pareto efficient.

The Second Welfare Theorem: Every Pareto efficient allocation can be supported as a

Walrasian equilibrium.

The theorems are certainly not true in the unconditional form in which we’ve stated them

here. A better way to think of them is this: “Under certain conditions, a market equilibrium

is efficient” and “Under certain conditions, an efficient allocation can be supported as a

market equilibrium.” Nevertheless, these two theorems really are fundamental benchmarks

in microeconomics. We’re going to give conditions under which they’re true. One (very

stringent) set of conditions will enable us to prove the theorems with the calculus methods

(i.e., Kuhn-Tucker, Lagrangian, gradient methods) we’ve used so fruitfully in our analysis of

Pareto efficiency. Additionally, for each theorem we’ll provide a much weaker set of conditions

under which the theorem remains true.

Assume to begin with, then, that all the consumers’ preferences are “very nice” — viz., that

they’re representable by utility functions ui that satisfy the following condition:

ui is continuously differentiable, strictly quasiconcave, and ∀xi ∈ Rl
+ : uik(xi) > 0 (∗)

The First Welfare Theorem: If
(
p̂, (x̂i)

n
1

)
is a Walrasian equilibrium for an economy

E = ((ui, x̊i))
n
1 in which each ui satisfies (∗), then (x̂i)n1 is a Pareto allocation for E.

Proof:

Because
(
p̂, (x̂i)

n
1

)
is a Walrasian equilibrium for E, each x̂i maximizes ui subject to xi = 0

and to the budget constraint p̂ · xi 5 p̂ · x̊i. Therefore, for each i ∈ N there is a λi = 0 that

satisfies the first-order marginal conditions for i’s maximization problem:

∀k : uik 5 λip̂k, with equality if x̂ik > 0, (1)

where of course the partial derivatives uik are evaluated at x̂i . In fact, because each uik > 0,

we have λi > 0 and p̂k > 0 for each i and each k. The market-clearing condition in the

definition of Walrasian equilibrium therefore yields
n∑

i=1

x̂ik =
n∑

i=1

x̊ik for each k (because each p̂k > 0). (2)



For each i we can define λ′i =
1

λi
, because λi > 0, and then we can rewrite (1) as

∀k : λ′iu
i
k 5 p̂k, with equality if x̂ik > 0, (3)

for each i ∈ N . But (2) and (3) are exactly the first-order conditions that characterize

the solutions of the Pareto maximization problem (P-max). Therefore (x̂i)n1 is a solution of

(P-max), and since each uik > 0, a solution of (P-max) is a Pareto allocation. �

In the proof, we could have instead expressed the first-order marginal conditions for the

individual consumers’ maximization problems in terms of marginal rates of substitution:

∀k, k′ : MRSi
kk′ =

p̂k
p̂k′

(4)

(written for the interior case, to avoid a lot of inequalities), which yields the (Equal MRS)

condition
∀i, j, k, k′ : MRSi

kk′ = MRSj
kk′ . (5)

The conditions (5) and (2) then guarantee that (x̂i)n1 is a Pareto allocation.

Now let’s see if we can prove the First Welfare Theorem without any of the assumptions in

(∗). It turns out that we can’t quite do that; however, the only thing we need to assume is

that each consumer’s preference %i is locally nonsatiated (LNS).

The First Welfare Theorem: If
(
p̂, (x̂i)

n
1

)
is a Walrasian equilibrium for an economy

E = ((%i, x̊
i))

n
1 in which each %i is locally nonsatiated, then (x̂i)n1 is a Pareto allocation for

E.

Proof:

Suppose (x̂i)n1 is not a Pareto allocation — i.e., some allocation (x̃i)n1 is a Pareto improve-

ment on (x̂i)n1 :

(a)
∑n

1 x̃i 5
∑n

1 x̊i

(b1) ∀i ∈ N : x̃i %i x̂i

(b2) ∃i ∈ N : x̃i �i x̂i.

Because
(
p̂, (x̂i)

n
1

)
is a Walrasian equilibrium for E, each x̂i is maximal for %i on the budget

set B(p̂, x̊i) := { xi ∈ Rl
+ | p̂ · xi 5 p̂ · x̊i }. Therefore, (b2) implies that

∃i ∈ N : p̂ · x̃i > p̂ · x̊i. (6)

Moreover. since each %i is LNS and each xi is %i-maximal on B(p̂, x̊i), (b1) implies that

∀i ∈ N : p̂ · x̃i = p̂ · x̊i , (7)

as follows: assume that x̃i %i x̂i and suppose that p̂ · x̃i < p̂ · x̊i; then, because %i is LNS,

there is a bundle x that satisfies both p̂ · x̃i < p̂ · x̊i and x �i x̃i, which contradicts the

maximality of x̂i on the budget set B(p̂, x̊i).
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Summing the inequalities in (6) and (7) over all i ∈ N yields
n∑

i=1

p̂ · x̃i >
n∑

i=1

p̂ · x̊i, (8)

i.e.,
p̂ ·

n∑
i=1

x̃i > p̂ ·
n∑

i=1

x̊i. (9)

Since p̂ ∈ Rl
+, it follows from (9) that there is at least one good k for which

n∑
i=1

x̃ik >
n∑

i=1

x̊ik (10)

— i.e., (x̃i)n1 does not satisfy (a). Our assumption that (x̃i)n1 is a Pareto improvement has

led to a contradiction; therefore there are no Pareto improvements on (x̂i)n1 , and (x̂i)n1 is

therefore a Pareto allocation. �
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The Second Welfare Theorem: Let (x̂i)n1 be a Pareto allocation for an economy in which

the utility functions u1, . . . , un all satisfy (∗) and in which the total endowment of goods is

x̊ ∈ Rl
++. Then there is a price-list p̂ ∈ Rl

+ such that

for every (̊xi)n1 that satisfies
n∑

i=1

x̊i = x̊ and ∀i : p̂ · x̊i = p̂ · x̂i, (11)(
p̂, (x̂i)

n
1

)
is a Walrasian equilibrium of the economy E = ((ui, x̊i))

n
1 .

— i.e.,
(
p̂, (x̂i)

n
1

)
is a Walrasian equilibrium of the economy in which each consumer has the

utility function ui and the initial bundle x̊i.

Proof:

Let (x̂i)n1 be a Pareto allocation for the given utility functions and endowment x̊. We first

show that the conclusion holds for (̊xi)n1 = (x̂i)n1 — i.e., if each consumer’s initial bundle is

x̂i. Since (x̂i)n1 is a Pareto allocation, it is a solution of the Pareto maximization problem

(P-max), and it therefore satisfies the first-order marginal conditions

∀i, k : ∃λi, σk = 0 : λiu
i
k 5 σk, with equality if x̂ik > 0. (12)

Each λi is the Lagrange multiplier for one of the utility-level constraints in (P-max), and

since uik > 0 for each i and each k, it’s clear that each constraint’s Lagrange multiplier must

be positive: relaxing any one of the constraints will allow u1 to be increased.

For each k, let p̂k = σk. Now (12) yields, for each i,

∃λi : ∀k : uik 5
1

λi
p̂k, with equality if x̂ik > 0. (13)

These are exactly the first-order marginal conditions for consumer i’s utility-maximization

problem at the price-list p̂. Therefore, since each consumer’s initial bundle is x̂i, each con-

sumer is maximizing ui at x̂i. And since p̂k = σk > 0 for each k, the constraint satisfaction

first-order condition for (P-Max) yields
∑n

i=1 x̂i = x̊, so the market-clearing condition for a

Walrasian equilibrium is satisfied as well. Thus, we’ve shown that all the conditions in the

definition of Walrasian equilibrium are satisfied for
(
p̂, (x̂i)

n
1

)
.

If each consumer’s initial bundle is some other x̊i instead of x̂i, but still satisfying (11), then

the second equation in (11) ensures that each consumer’s budget constraint is the same as

before (the right-hand sides have the same value), and therefore the inequalities in (13) again

guarantee that each x̂i maximizes ui subject to the consumer’s budget constraint. And as

before, the constraint satisfaction first-order condition for (P-Max),
∑n

i=1 x̂i = x̊, coincides

with the market-clearing condition for a Walrasian equilibrium. �
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Just as with the First Welfare Theorem, the Second Theorem is true under weaker assump-

tions than those in (∗) — but in the case of the Second Theorem, not that much weaker:

we can dispense with the differentiability assumption, and we can weaken the convexity

assumption and the assumption that utility functions are strictly increasing.

The Second Welfare Theorem: Let (x̂i)n1 be a Pareto allocation for an economy in

which each ui is continuous, quasiconcave, and locally nonsatiated, and in which the total

endowment of goods is x̊ ∈ Rl
++. Then there is a price-list p̂ ∈ Rl

+ such that

if the no-minimum-wealth condition

∀i ∈ N : ∃xi ∈ Rl
+ : p̂ · xi < p̂ · x̂i, (NMW)

is satisfied, then for every (̊xi)n1 that satisfies
n∑

i=1

x̊i = x̊ and ∀i : p̂ · x̊i = p̂ · x̂i, (14)(
p̂, (x̂i)

n
1

)
is a Walrasian equilibrium of the economy E = ((ui, x̊i))

n
1 .

Note that the no-minimum-wealth condition (NMW) is satisfied if the much stronger condi-

tion that each x̂i ∈ Rl
++ is satisfied, i.e., that each x̂ik > 0.

The proof of the Second Theorem at this level of generality is not nearly as straightforward as

the proof of the First Theorem. The proof requires some investment in the convex analysis.

We’ll cover this proof after we’ve covered the necessary convex analysis in the Math Course.
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Duality Theorems in Demand Theory:

Utility Maximization and Expenditure Minimization

These two Duality Theorems of demand theory tell us about the relation between utility max-

imization and expenditure minimization — i.e., between Marshallian demand and Hicksian

(or compensated) demand. We would like to know that the utility-maximization hypothesis

ensures that any bundle a consumer chooses (if he is a price-taker) must minimize his expen-

diture over all the bundles that would have made him at least as well off. And conversely,

we would like to know that a bundle that minimizes expenditure to attain a given utility

level must maximize his utility among the bundles that don’t cost more. The following two

examples show that the two ideas are not always the same.

Example 1: A consumer with a thick indifference curve, as in Figure 1, where there are

utility-maximizing bundles that do not minimize expenditure.

Example 2: A consumer whose wealth is so small that any reduction in it would leave

him with no affordable consumption bundles, as in Figure 2, where there are expenditure-

minimizing bundles that do not maximize utility.

The examples suggest assumptions that will rule out such situations.

Utility Maximization Implies Expenditure Minimization

It’s clear in Example 1 that the reason x̂ fails to minimize p · x is because the preference

is not locally nonsatiated. If a consumer’s preference is locally nonsatiated, then preference

maximization does imply expenditure minimization.

First Duality Theorem: If % is a locally nonsatiated preference on a set X of consumption

bundles in R`
+, and if x̂ is %-maximal in the budget set {x ∈ X | p · x 5 p · x̂}, then x̂

minimizes p · x over the upper-contour set {x ∈ X | x % x̂}.

Proof: (See Figure 3)

Suppose x̂ does not minimize p ·x on {x ∈ X | x % x̂}. Then there is a bundle x̃ ∈ X such

that x̃ % x̂ and p · x̃ < p · x̂. Let N be a neighborhood of x̃ for which x ∈ N ⇒ p ·x 5 p · x̂
— i.e., N lies entirely below the p-hyperplane through x̂. Since % is locally nonsatiated,

there is a bundle x′ ∈ N that satisfies x′ � x̃, and a fortiori x′ � x̂. But then we have both

p · x′ 5 p · x̂ and x′ � x̂ — i.e., x̂ does not maximize % on the budget set, a contradiction.

�
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Expenditure Minimization Implies Utility Maximization

It seems clear that the reason x̂ doesn’t maximize utility in Example 2 among the bundles

costing no more than x̂ is that there are no bundles in the consumer’s consumption set that

cost strictly less than x̂. If there were such a bundle, we could move “continuously” along

a line from that bundle to any bundle x̃ costing no more than x̂ but strictly better than x̂,

and we would have to encounter a bundle that also costs strictly less than x̂ and that also

is strictly better than x̂ — so that x̂ would not maximize utility among the bundles costing

no more than x̂. Note, though, that in addition to having some bundle that costs less than

x̂, this argument also requires both continuity of the preference and convexity of the set of

possible bundles. The proof of the Second Duality Theorem uses exactly this argument, so it

requires these stronger assumptions, which were not needed for the First Duality Theorem.

Can you produce counterexamples to show that the theorem does indeed require each of these

assumptions — continuity and convexity — in addition to the counterexample in Figure 2 in

which there is no cheaper bundle than x̂ in the consumer’s set of possible consumptions?

Since we have to assume the preference is continuous, it will therefore be representable by

a continuous utility function, so we state and prove the theorem in terms of a continuous

utility function. We could instead do the proof with a continuous preference %.

Second Duality Theorem: Let u : X → R be a continuous function on a convex set X of

consumption bundles in R`
+. If x̂ minimizes p ·x over the upper-contour set {x ∈ X | u(x) =

u(x̂)}, and if X contains a bundle x that satisfies p · x < p · x̂, then x̂ maximizes u over the

budget set {x ∈ X | p · x 5 p · x̂}.

Proof: (See Figure 4)

Suppose that x̂ minimizes p · x over the set {x ∈ X | u(x) = u(x̂)}, but that x̂ does

not maximize u over the set {x ∈ X | p · x 5 p · x̂} — i.e., there is some x̃ ∈ X such that

p · x̃ 5 p · x̂ but u(x̃) > u(x̂). Since u is continuous, there is a neighborhood N of x̃ such that

each x ∈ N also satisfies u(x) > u(x̂). We’ve furthermore assumed that there is a bundle

x′ ∈ X that satisfies p ·x′ < p · x̂. Since X is convex, the neighborhood N contains a convex

combination, say x′′, of x′ and x̃. Since p · x̃ 5 p · x̂ and p ·x′ < p · x̂, we have p ·x′′ < p · x̂.

But since x′′ ∈ N , we also have u(x′′) > u(x̂). Thus, x̂ does not minimize p · x over the set

{x ∈ X | u(x) = u(x̂)}, a contradiction. �
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Figure 1 Figure 2

Figure 3 Figure 4
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